Nom	*
Prénd	om : mc
Class	e : 1S

DEVOIR DE SYNTHESE N° I

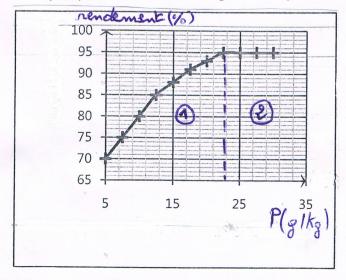
DUREE: 1 H

NOTE:...../20

EXERCICE N° 1:

A - accordez, pour chaque chiffre, la lettre correspondante.

يهمنا	ځ	احا	نجا


	Termes	Accord entre chiffres et lettres	Définitions
1	- Xylème		a-Formation de la matière organique qui nécessite de l'énergie lumineuse.
2	- Sève brute		b -Elément minéral nécessaire à la plante en quantité, de l'ordre du g ou mg.
3	- Vaisseau de bois		c-Ensemble de vaisseaux conducteurs de la sève brute.
4	- Concentration optimale		d-Mélange d'eau et de sels minéraux circulant de la racine vers les feuilles.
5	- Macroélément		e-Ensemble de cellules mortes disposées en files réduites à leur paroi lignifiée.
6	- photosynthèse		f-Concentration permettant une vitesse maximale de croissance.

B – Trois matières vivantes ont été testé, et ont donné les conclusions suivantes : le **tubercule de pomme de terre** contient de **l'amidon**, la **fève** et **l'haricot** renferment des **protides**, le **jus de raisin** est à gout sucré contenant du **glucose**.

Déterminez les réactifs utilisés et donnez les résultats correspondants en complétant le tableau suivant :

Matière vivante	Réactif utilisé	Résultat obtenu
Fève et haricot		
Tubercule de pomme de terre		
Jus de raisin		

EXERCICE N° II : La courbe suivante représente la variation du rendement (%) d'une culture en fonction de la quantité de phosphore utilisé comme engrais chimique.

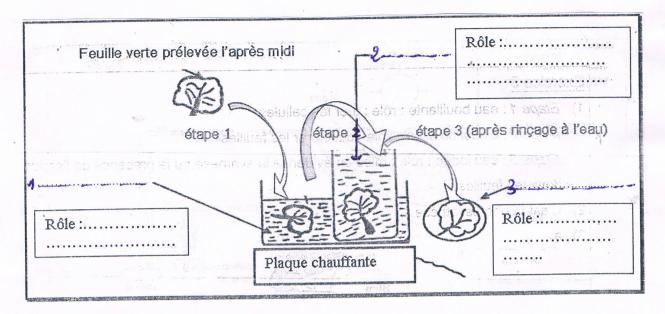
1/ Attribuez, à chaque partie le titre correspondant :
Partie 1 :/Partie 2 :
2/ Précisez le rendement maximal de cette culture
3/ Précisez la concentration optimale, en élément phosphore , qui assure un rendement maximum de la culture
4/ Un agriculteur a utilisé une concentration de 60 g/kg , en élément phosphore pou améliorer le rendement de ses cultures. Prévoyez l'impact de cette concentration sur les plantes.

EXERCICE N° III :

L'étude du rôle d'un élément chimique dans le végétal peut se faire en cultivant la plante sur un milieu carencé en cet élément.

Le tableau **T1** présente la composition de trois milieux de culture **a, b** et **c**Le tableau **T2** précise les résultats de cultures effectuées sur ces différents milieux.

Milieu	Masse
	fraiche
	(exprimée
	en % du
	témoin)
а	42
b	73
C	100

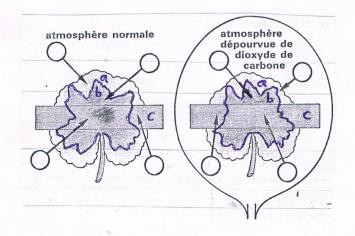

Matière	Milieu	Milieu	Milieu
minérale	а	b	С
CaNO ₃	-	+	+_
KNO ₃	•	+	+
KH ₂ PO ₄	+	-	+
MgSO4	+	+	+
CaCl ₂	+	+	+
KCI	+	+	+
NaNO ₃	-	+	+
Na ₂ SO ₄	+	+	+
NaH ₂ PO ₄	+	-	+
Solution ferrique	+	+	+

T1: composition des milieux de culture

1/ précisez le milieu complet (tableau T1)
2/ précisez les milieux incomplets (tableau T1)
3/ sur les milieux incomplets, déterminez les éléments minéraux en carence.
Milieu a/Milieu b
4/ précisez l'élément minéral le plus important pour la plante (tableaux T1 et T2).

EXERCICE N° IV:

Pour mettre en évidence la synthèse de l'amidon par les feuilles vertes, on réalise l'expérience suivante ; sur une feuille exposée à la lumière toute la journée puis récoltée l'après midi.


- 1/ complétez le document en indiquant le rôle de chaque liquide utilisé.
- 2/ nommez le mécanisme réalisé par la feuille verte pour produire l'amidon.

On désire vérifier expérimentalement l'hypothèse selon laquelle la lumière, chlorophylle et dioxyde de carbone sont indispensable à la photosynthèse. Le tableau suivant schématise les différentes combinaisons possibles entre la présence ou l'absence des trois paramètres.

Conditions	chlorophylle	lumière	CO ₂
1	+	+	+
2	+	+	-
3	+	-	+
4	-	+	+
5	+	-	-
6	•	-	+
7	-	+	•
8	-	-	-

3/ Placez, sur le schéma suivant, chaque condition dans le cercle correspondant (écrivez les chiffres).

N.B: (+): présence / (-): absence / a: plage verte / b: plage jaune / c: cache noir

Atmosphère dépourvu de dioxyde de carbone : absence de CO₂.


4/ les deux feuilles précédentes sont traitées à l'eau iodée.

Complétez le tableau suivant, en mettant : (+) : test positif / (-) : test négatif.

Donnez pour chaque condition la couleur correspondante, après traitement à l'eau iodée.

Conditions	Test à l'eau iodée	Couleur correspondante
1		
2		
3		140
4		
5		
6		n e
7		
8		

5/ chez une autre feuille verte, on a coupé la nervure centrale, puis on l'a exposé à la lumière. Après 12 heures, elle est traitée à l'eau iodée pour chercher l'amidon.

a-colorez la partie de la feuille qui a synthétisé l'amidon. (Utilisez la couleur correspondante)
b-expliquez, pourquoi la deuxième partie de la feuille ne synthétise pas l'amidon